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Abstract. An elastic body moving in a quenched random force environment with a singular 
force correlator experiences an additional fridon force which is inversely propoaional to 
velocity. This dynamicnl friction mechanism is impomnt, e.g., for a moving interface which is 
subjected to quenched random pinning forces. For sufficiently strong pinning forces, interface 
motion becomes nnstable at values of driving force smaller than some critical one and the 
interface velocity dmps. We expect in this case a first-order depinning bansition with hysteresis 
in the dependence of the interface velocity on driving force. Instability in the interface motion 
remains under perturbations like an additional periodic driving force or thermal tluctuadons. 
Interface motion instability clin also take place in systems with small viscosity, when inertial 
effects are important. 

1. Introduction 

A number of transport phenomena involve the motion ,of an elastic medium subjected 
to quenched random forces. A well known example is a domain wall movement in a 
disordered magnet (see e.g. [l]). Other familiar examples include charge density wave 
(CDW) systems (see e.g. [Z]), and fluid-fluid interface movement in a porous medium (see 
e.g. [3]). The driven motion of an interface in a medium with random pinning forces and the 
related problem of the nonlinear dynamic of sliding charge density waves (CDW) have been 
considered by many authors (for a review see e.g. 14, 51). The basic equation describing 
the viscous motion of the d-dimensional interface can be written in the form 

(1) 
az 
a t  

p-1- = y v z z  + f + q(x, z) 

where x is a d-dimensional vector describing the interface, z is a interface coordinate in 
the direction normal to the interface, p is a mobility, f is a driving force, and q(x, z) a 
random pinning, force which acts on the interface. The latter has zero mean and correlator 

(v(z, z)~(z’,  z’)) = Sd(z - z’)A(Iz - z’D (2) 
where (...) means the average over the possible distributions of the random force q(x, z). 
Though the details of random force correlations in the x space are not important and one 
can use a simple white noise correlator, the behaviour of function A(z) near z = 0 is crucial 
for the interface problem [5]. One limitation is that the characteristic distance a at which 
A(z) changes is finite. 

The critical behaviour near the depinning threshold has been studied in detail in the 
l i t  of weak pinning force and viscous motion (for a review see e.g. [4, 51). We briefly 
review the results. For steady interface motion at zero temperature the driving force f 
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should exceed some threshold force fe. Near the threshold the interface velocity U obeys a 
power law: 

U a (f - fdB (3) 
where the critical exponent 0 is given by 0 = 1 - 6/9 + O(ez) 151. Here E = 4 - d. 
It has been shown [4, 51 that singularity in the random force correlator in the z direction 
(A(z)) at z = 0 (see equation (2)) plays an important role in the interface depinning problem, 
namely (i) renormalizable theory requires nonzero aA(z)/az A’(z) at z = 0, and (ii) with 
nonzero A’(0) the threshold force fc a IA’(O)l/y. If the initial correlator has A‘(0) = 0, 
then, according to [5], it will renormalie, and at some finite scale ci a singularity appear. 
As a result the threshold force f c  a l>(ci)l/y, where i ( z )  is a renormalized correlator. 
One can also see the special role of singular A@) in the mean-field approximation (see 
below), as has been found in [4, 61. 

In contrast to the previous studies we consider here the interface motion in the random 
force environment in the high-velocity limit. We use the mean-field approximation which 
has been proved as a useful approximation to study the interface motion and has been 
used by many authors [4, 6-91, The singular force correlator results in this case in the 
additional contribution to the friction force which is inversely proportional to the velocity. 
To analyse the problem we consider the probability distribution of the solutions of the 
stochastic differential equation (1). This probability obeys the Fokker-Planck equation. 
The solution of the Fokker-Planck equation shows the existence of the effective dynamical 
friction force which acts on the moving interface due to the rapid changes of the random 
force equation (2). Together with common viscous friction which grows with velocity, the 
dynamical friction can result in a minimum in the friction force at some critical velocity U,. 
This minimum appears only for strong enough random force acting on an interface. When 
one decreases the driving force f from the state with the velocity U > U, then at every 
U 2 U, the friction force f f , ( u )  decreases monotonically and can adjust to the driving force. 
But at U < uc the friction force starts to grow and exceed the driving force. This means 
that the interface motion is unstable at U -= U, and the velocity can simply drop to zero. 

In section 2 we consider the dynamical friction force and section 3 deals with instability 
in the interface motion. 

2. Dynamical friction 

Below we consider the influence of the quenched random potential on the moving interface. 
The interface velocity will be assumed high enough to be away from the critical region. It is 
natural to consider this finite-velocity case in the mean-field approximation. The mean-field 
model for the CDW problem has been formulated by Fisher (see [7, 41). Different versions 
of the mean-field model have been used by many authors (see 18, 9, 61) to study critical 
behaviour of the interface. In the mean-field approximation one describes the interface 
moving with velocity U under the applied force f by only one coordinate z with the mean 
value (z) = ut (see 18, 9, 61). The corresponding dynamical equation has the form 

In the above we have put I.L = 1. The first term on the rhs in equation (4) describes the 
elasticity of the interface, the last one the random pinning force which acts on the interface. 
The latter has zero mean and correlator 
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It is convenient to introduce relative displacement h = z - ut with (h)  = 0. From equation 
(4) one has 

dh 
yh  + f - U + q(h + u t ) .  (6) 

From the formal point of view equation (4) describes a particle driven by a force f via a 
spring with rigidity y. This mechanical analogy of the mean-field model is schematically 
represented in figure 1. 

_ = -  
dt 

Figure 1. Schematic representation of the mean-field model. The particle with coordinate L ( I )  
is driven with velocity U via a spring with rifidity y.  Block I represents schematidy the mean 
position (L) = ut of the interface. q(r) represents the random force which acts on the particle. 

We consider the case of relatively high interface velocity. The high velocity means 
that the characteristic time r, = a/u at which the random pinning force changes due to the 
interface movement is much smaller then the typical relaxation time ‘ti of the interface. In 
other words U >> a/si = vi. In the case of weak pinning force, namely A(0) << yzaz, 
the upper l i t  on the time ri is I / y .  In the high-velocity limit one can average over the 
time ‘t, such that ‘tr < ‘t << ‘ti. To study the problem it is convenient to use methods 
from the theory of the stochastic differential equations. For every realization of @e random 
pinning force one has some solution of equation (6).’ The distribution of these solutions is 
usually characterized (see [ l l ,  101) by probability P(h‘, tlho, 0) = P(h, t )  where h(t)  = h’, 
and h(0) = ho. This probability distribution obeys the Fokker-Planck equation. One can 
derive this equation following the general procedure which is considered in the appendix 
(for references see e.g. [lo, 111): The Fokker-Plauck equation for equation (6) has the form 

a a 1 az 
-P(h, t )  = --P(h, t )A(h,  t )  + --P(h, t)B(h, t )  
at ah 2 ah2 (7) 

(8) 

(9) 

Calculation of A(h, t )  and B(h, t )  is found in the appendix, and A0 and EO are constants 
of the order of unity. It is convenient to write A(h, t )  in the form A(h, t )  = y(h0 -~ h) ,  
where yho = f - U +aAoA‘(O)/u. The last term in the expression for ho means that the 
moving interface can experience dynamical friction. This friction mechanism is effective 
only~if A’(0) -= 0. For the Gaussian-like random force correlator in equation (5) A’(0) = 0. 

a 
A(h, t )  = -yh + f - U + -AoA’(O) 

B(h, t )  = -BoA(O). 
U 

a 
v 
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The simplest example of a random process with negative A’(0) is the Ornstein-Uhlenbeck 
process (see e.g. [lo, 111). It means that the random force q(z) is a solution of the stochastic 
differential equation 

where t(x) is a Gaussian white noise: 

{((z)e(z’)) = 2a-’A06(z -z‘). 

For the correlator equation (5) one has (q(z)q(z’)) = Aoexp(-lz -z’l/a) with A(0) = Ao, 
and A‘(0) = A,/a. The special role of the random forces with correlator with nonzero 
A’(0) has been recognized in [4, SI. It has been found that in the limit of the weak pinning 
force (A(0) << y2a2) one has finite threshold force fc only in the case of a pinning force 
with A’(0) < 0 either at the smallest scale a 141, or after renormalization at some finite 
scale ii > a ([5]). For the depinning (threshold) force one has fc 0: 12(ii)I/y, where 2 ( z )  
is a renormalized function A. The mean-field model with such a pinning force correlator 
has been considered in [6]. The steady state solution of equation (7) has the form 

To satisfy the condition (h)  = 0 one should put ho = 0. From the last condition one has 
the equation for interface velocity: 

(13) f - U - % -  f: - 0  

where fo = 1/-4aAoA’(O). Equation (13) has a simple physical meaning-in the case of 
steady movement of the interface one has two contributions to the friction force: one from 
the viscous friction which is proportional to U, and the other which is proportional to (l/u), 
due to the singularity of the pinning force correlator. From (12, 13) for the case of a random 
force generated by the Ornstein-Uhlenbeck process one can find the lower limit on the 
diffusion constant B = BoaA(O)/u < 2aBoA(O)/fo = 2aBoA(O)/J- a& 
and an upper limit on the mean square fluctuation of h: ((hla)’) < &/(ya). 

The dynamical friction force is not a specific feature of the interface mean-field model. 
One can see this from the fact that interface surface tension y does not enter equation (13). 
Important are relatively high velocity and singularity in the force correlator. The dynamical 
friction force has been found earlier for an energetic charge particle in an unmagnetized 
plasma (see e.g. 112, 111). This problem was considered originally in [13]. Though the 
viscous movement of an interface and ‘non-viscous flight of a particle are described by 
different dynamical equations, the dynamical friction in both cases arises from the random 
force environment. 

In the case of the original model, equation (1). one can consider the interface as 
consisting of blocks connected by springs. At high interface velocity, fluctuations in the 
velocity of these blocks should be much smaller then the interface (or block) velocity. 
This means that one can apply the above consideration to single blocks with the same 
result-dynamical friction force. 

3. Instab+@ of interface motion 

In the case of seong pinning force (A >> y2aZ) dynamical friction has an important 
consequence for interface motion. For singular pinning force correlator (A’(0) < 0) interface 
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motion becomes unstable below some critical value of driving force. This conclusion follows 
from the solution of equation (13): 

Equation (13) for interface velocity has a solution only for driving force f > fo,’and 
interface velocity is limited from below, namely U 2 i fo .  Qualitative explanation is 
straightforward-the friction force has a minimum value fo at uc = fop. With further 
decrease of the driving force the total friction force increases. This means that a driving force 
smaller then fo cannot hold the velocity at a value near U,. As a result the velocity should 
drop down to some value U, which cannot be found by the above approach. Nevertheless 
one can obtain an upper limit on U,. Indeed, the above consideration is restricted by the 
condition of high velocity, i.e. U >> ya, or fo >> ya. This condition coincides actually with 
the condition of strong disorder. For this reason in the limit of strong disorder, i.e. when 
A(0) >> y2aZ, the threshold velocity U, = ffo can be large enough (U, > vi) to satisfy the 
condition of the high-velocity limit (G << 7;). This means that with diminishing driving 
force the interface velocity will drop to zero or at least to the value U, x ui = a/ t ;  << U,. In 
the region U < vi the above approach fails. For this reason we cannot rigorously prove that 
the velocity will drop exactly to zero. Nevertheless it seems the most probable scenario. 
One can support this result by comparison of fo with the value of threshold force obtained 
for the limit of low velocity. We know of detailed calculation of the threshold force for 
the original equation (1) only for the case of weak disorder (see [SI) when we expect 
a continuous transition. For this reason we use for comparison the mean-field result of 
Nmyan and Fisher [4] for the so-called ‘scalloped‘ potential. In this mean-field version the 
pinning force q(z) is produced by the piecewise periodic potential with random amplitude, 
the so-called ‘scalloped‘ potential. In this approach one can extend the analysis to the 
strong-potential limit. Dynamical friction is not detectable in this approximation. The 
corresponding expression for the threshold force has the form (equation (B.6b) in [4]) 

(13 

where variable g describes the pinning force strength, and y = 1. We have changed variable 
h in the original work [4] to g. To compare with the above results consider the case of 
Ornstein-Uhlenbeck-like pinning force correlation. Then (g2) corresponds to Ao, and in 
the limit of weak disorder (A0 < y2a2 or (g2) << 1) fc x Ao/y  which corresponds to 
FT = x(g2) ,  as follows from equation (15). According to equation (15) in the limit of 
strong disorder (A0 >> yZaZ or (g*) > 1) one has for FT = x m ,  which corresponds to 
fc 

In the case when the driving force increases from zero, one can expect that depinning 
proceeds via a first-order-like transition, i.e. with a velocity jump, in contrast to the second- 
order-lie, continuous depinning transition in the case of weak disorder (A(0) < y2aZ). 
One can also expect that the interface starts to move at some fcl =- fo, i.e. one has hysteresis 
in the interface velocity versus driving force dependence. 

We have shown that in the limit of strong pinning force one has a velocity jump at 
the depinning transition. In contrast, in the weak-pinning-force limit one has a continuous 
transition. We expect that at the pinning force strength Corresponding to A FX yza2 one has 
a ‘tricritical’ point at which the continuous transition changes to a first-order transition. 

-&. This estimates support our suggestion that fc = f o .  
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3.1. Periodic driving force 

Experimentally one can apply a periodic driven force to the CDW (see [14]). Consider the 
influence of an additional periodic driven force A cos ot on the above results. The equation 
of motion has the form 

(16) 

By introducing the new variable h = z - ut  + b cosot + c sinot with b = A y 2 / ( y 2  - 02) 

and c = A y o / ( y Z  - o’), one can rewrite equation (16) in the form 

_ = _  dz y (z -u t )+ f+Acoso t+q(z ) .  
dt 

yh + f - U +  q((h+ ut +bcosot  +csinwt)/a) (17) 
dh _ = _  
dt 

In addition to the characteristic times 7, and ri one has now the additional r, = a/c(o)o = 
a(y2 - 02)/Aw2. The corresponding Fokker-Planck equation is analogous to equation (7) 
with A(h, t )  = -y(h - h ~ ) ,  where yho = f - u + aAoA‘(O)/(u t c(w)w). and with 
B(h, t )  = aBo/(u + c(o)wA(O)). By putting xo = 0 one obtains for the velocity 

U = f (  f - c(o)o) + ; JGGZq.  
This result means that at small values of c(o)w the periodic force will not eliminate 
instability in the interface motion. 

To study temperature effects one can introduce an additional thermal noise term qr(t )  
into equation (6) with correlator (qj-(t)aT(t’)) = 2T 6( t  - t’). Thermal noise is additive 
to the quenched random force, has no influence on function A(h, t )  in equation (7) and 
changes only the value of diffusion constant B(h), namely BT = B(h) + 2T.  

3.2. Small viscosity 

Above we have considered the case of large viscosity when one can neglect the inertial 
term. Consider the mean-field interface model in the limit of small viscosity. We are 
mainly interested in the stability of the above results with respect to the viscosity decrease. 
In the limit of vanishing viscosity one should take into account the inertial term, namely, 
instead of equation (4) (we have put p = 1) one has: 

d2z dz 
dt2 dt 

m- + - = -yz + f + qk). 
Substituting z = h + ut,  and (dhjdi) = U, one has 

dh 
dt 
- = U  

du 
m z  =-u - yh + f - U +  q(h+ut). 

In addition to the relaxation times q and rr one has the viscous relaxation time rv = m. 
We will consider the situation when r, < q, 5. If ri >> rv, then we have the viscous case, 
which has been considered above. The corresponding Fokker-Planck equation has the form 

1 auP(h. U, t) B a2P(h, U ,  t )  +- 
2m2 au2 +- m au (211 
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where ( y / m ) h o ( f ,  U) = f- u+QAoA’(O)/U, and B = aBoA(O)/u. The stationary solution 
of equation (21) is well known (see e.g. [IO]): 

m 
B B (22) 

Using the condition (ho) = 0 we have for U an equation which coincides with equation (14) 
for the pure viscous case. 

According to equation (22) the relative velocity U fluctuates with mean square (u2) % 

aA(O)/(um). From the high-velocity condition ru >> r, or m >> U / U O  % one 
has that {uz)/v2 < aA(O)/(uim) % a/(“) << 1. The last inequality means that 
under conditions of high velocity U, fluctuations of velocity are small and the mean-field 
approximation is valid. Analysis of the limit of vanishing viscosity show that this is no 
longer hue when p + CO. We will analyse the limit p + 00 in a separate publication. We 
can conclude that under the above conditions one has the same physical picture of interface 
motion instability for the low-viscosity case as for purely viscous motion of an interface. 

3.3. Experimental observation 

We have found that, under some conditions, two phenomena which differ from the common 
picture of interface movement can take place: the dynamical friction, and, due to dynamical 
friction, the instability of interface motion. It will be interesting to find this type of behaviour 
in an experimental system. 

Note that the dynamical friction force behaves analogously to the dry friction force i.e. it 
grows with velocity decrease (see e.g. [15]), though equation (1) describes the pure viscous 
motion. Such unusual behaviour of the friction force can be a useful guide in the search 
for corresponding experimental systems. 

We have considered the interface in a mean-field approximation and have found the 
threshold velocity for the infinite interface. Below the threshold velocity the interface motion 
becomes unstable. On the finite. scale the local ‘threshold’ velocity can vary significantly 
from one part of the interface to the other. This means that in a real system the instability 
manifests itself in the strong fluctuations in the velocity of different parts of the interface. 
As a result instead of a ‘sharp’ transition in the mean-field solution for an infinite system, 
in a finite system one should observe in some range near the threshold interface velocity 
strong irregularities and hysteresis phenomena in the interface motion. 

The 
strongest limitation is a necessity for a strong random force (A >> y2uz) with a singular 
correlator (see equation (2)) acting on the interface. One cannot expect that this condition 
can be realized for every domain wall or CDW system. Nevertheless, we hope that a 
first-order depinning transition will be found in experiment. 

~ ( h ,  u) = exp (--(h Y - ho)z - -U’). 

The first-order depinning transition is possible under some conditions only. 

4. Conclusions 

We have shown that elastic bodies (interface, charge density wave, etc) which move with 
sufficiently high velocity through media with quenched random forces which have a singular 
correlator experience a dynumical friction force which is inversely proportional to velocity. 
The influence of this dynamical friction force on interface dynamics depends on the relative 
strength of disorder, interface stiffness and viscosity. In the case of strongly quenched 
pinning forces this dynamical friction results in the instability of interface motion at values 
of driving force smaller than the critical force fe We expect in this case a first-order 
depinning transition with hysteresis in the dependence of interface velocity on driving force. 
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Instability in the interface motion remains under perturbations like an additional periodic 
driving force or thermal fluctuations. This instability can also take place in systems with 
small viscosity, when inertial effects are important. 
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Appendix. The Fokker-Planck equation 

Below we briefly consider the derivation of the Fokker-Planck equation (7). The high- 
velocity limit means that the characteristic time to = aju  at which the random potential 
changes due to the interface movement is much smaller than the relaxation time l jy .  Then 
one can average over the time t, such that to < t -.-X l j y .  The distribution of the possible 
solutions one can characterize by probability P(h’, tlho, 0) = P(h ,  t )  to have, at time, t 
h(r) = h’, when h(0) = ha. This probability distribution obeys the Fokker-Planck equation 
of the form equation (7). One can derive this equation following the general procedure (see 
e.g. [lo]). Functions A(h, t )  and B(h, t )  one can calculate from 

(AI) A@, t )  = lim -(h(t + t) - h@)) 

B(h, z) = lim - l (  (h(t + t) - h(t))’). (-42) 

A,h = ~ r + T c w { - y h ( t + e ) + f -  u + q ( h ( t + e ) + v ( t + w ]  

1 
r-0 5 

z-0 5 

The difference h(Z + t) - h(t) = A& can be represented as follows: 

l + Z  

= ( -yh(t )  + f - u)t + l dB q(h(t)  + u(t +e)) 

t+r 
= (--yh(t) + f - u)z + l d0 q(h(t) + u(t +e))  

1+r a + (-w) + f - U),/ de a h ~ ( h ( t )  + v(t  +e)) .  (A31 

After averaging equation (A3) over the possible distribution of the random forces one has 
A(h , i )= -yh+f -u+A, .  ForA, onehas 

I 

f+7 a :+a 

A , =  r+o l i m A ( 1  T 
dBahq(h+uB)l  dB’q(hfu8‘)) 

a = lim- de’A’(u(8 -0’)) = -AoA’(O) 
r - o t  * U 

where A’(0) = @A(l)/al)I!=o, and A0 is a numerical constant of the order of unity. For 
B(h, t )  2 B one has 

B = lim (l dB q(h + ue) 11* dO’q(h + 16’)) 
l + Z  

r+o z 



Insrabilify of interface motion 7161 

and BO is a numerical constant of the order of unity. 
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